Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii.
نویسندگان
چکیده
Weak organic acid food preservatives exert pronounced culture pH-dependent effects on both the heat-shock response and the thermotolerance of Saccharomyces cerevisiae. In low-pH cultures, they inhibit this stress response and cause strong induction of respiratory-deficient petites amongst the survivors of lethal heat treatment. In higher pH cultures, 25 degrees C sorbic acid treatment causes a strong induction of thermotolerance without inducing the heat-shock response. In this study we show that trehalose, a major stress protectant, accumulates rapidly in S. cerevisiae exposed to sorbate at low pH. In pH 3.5 cultures, a 25 degrees C sorbate treatment is as effective as a 39 degrees C heat shock in inducing trehalose. This weak-acid-induced trehalose accumulation is enhanced in the pfk1 S. cerevisiae mutant, indicating that it arises through inhibition of glycolysis at the phosphofructokinase step. The more preservative-resistant food spoilage yeast Zygosaccharomyces bailii differs from S. cerevisiae in that: (1) its basal thermotolerance is not strongly affected by culture pH; (2) it does not display trehalose accumulation in response to 25 degrees C sorbate treatment at low pH; and (3) there is no induction of respiratory-deficient petites during lethal heating with sorbate. This probably reflects Z. bailii being both petite-negative and better equipped for maintenance of homeostasis during weak-acid, pH or high-temperature stress.
منابع مشابه
Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae.
Microbial spoilage of food causes losses of up to 40% of all food grown for human consumption worldwide. Yeast growth is a major factor in the spoilage of foods and beverages that are characterized by a high sugar content, low pH, and low water activity, and it is a significant economic problem. While growth of spoilage yeasts such as Zygosaccharomyces bailii and Saccharomyces cerevisiae can us...
متن کاملReactions of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulphite.
Sulphite inhibited growth of all four yeasts studied, Zygosaccharomyces bailii NCYC 563 being most sensitive and Saccharomyces cerevisiae NCYC 431 the least. Vertical Woolf-Eadie plots were obtained for initial velocities of 35S accumulation by all four yeasts suspended in high concentrations of sulphite. Equilibrium levels of 35S accumulation were reached somewhat faster with strains of S. cer...
متن کاملAdaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A Physiological Genomics Perspective
Acetic acid is an important microbial growth inhibitor in the food industry; it is used as a preservative in foods and beverages and is produced during normal yeast metabolism in biotechnological processes. Acetic acid is also a major inhibitory compound present in lignocellulosic hydrolysates affecting the use of this promising carbon source for sustainable bioprocesses. Although the molecular...
متن کاملOxygen requirements of the food spoilage yeast Zygosaccharomyces bailii in synthetic and complex media.
Most yeast species can ferment sugars to ethanol, but only a few can grow in the complete absence of oxygen. Oxygen availability might, therefore, be a key parameter in spoilage of food caused by fermentative yeasts. In this study, the oxygen requirement and regulation of alcoholic fermentation were studied in batch cultures of the spoilage yeast Zygosaccharomyces bailii at a constant pH, pH 3....
متن کاملMitochondrial proteomics of the acetic acid - induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii - derived hybrid strain
Very high concentrations of acetic acid at low pH induce programmed cell death (PCD) in both the experimental model Saccharomyces cerevisiae and in Zygosaccharomyces bailii, the latter being considered the most problematic acidic food spoilage yeast due to its remarkable intrinsic resistance to this food preservative. However, while the mechanisms underlying S. cerevisiae PCD induced by acetic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology letters
دوره 170 1 شماره
صفحات -
تاریخ انتشار 1999